Sate1*

KNX-DIM21

Uniwersalny dwukanałowy aktor ściemniający

CE

Skrócona instrukcja instalacji

Pełna instrukcja dostępna jest na stronie www.satel.pl

Wersja oprogramowania 1.01

knx-dim21_sii_pl 04/20

SATEL sp. z o.o. • ul. Budowlanych 66 • 80-298 Gdańsk • POLSKA tel. 58 320 94 00 • serwis 58 320 94 30 • dz. techn. 58 320 94 20; 604 166 075

www.satel.pl

WAŻNE

Urządzenie powinno być instalowane przez wykwalifikowany personel.

Przed przystąpieniem do montażu należy zapoznać się z instrukcją.

Wprowadzanie w urządzeniu jakichkolwiek modyfikacji, które nie są autoryzowane przez producenta, lub dokonywanie samodzielnych napraw skutkuje utratą uprawnień wynikających z gwarancji.

Firma SATEL stawia sobie za cel nieustanne podnoszenie jakości swoich produktów, co może skutkować zmianami w ich specyfikacji technicznej i oprogramowaniu. Aktualna informacja o wprowadzanych zmianach znajduje się na naszej stronie internetowej. Proszę nas odwiedzić: http://www.satel.pl

Deklaracja zgodności jest dostępna pod adresem www.satel.eu/ce

W instrukcji mogą wystąpić następujące symbole:

- uwaga;
 - uwaga krytyczna.

Niniejsza instrukcja opisuje sposób montażu modułu KNX-DIM21. Pozostałe informacje dotyczące modułu i jego konfigurowania znajdziesz w pełnej instrukcji dostępnej na stronie **www.satel.pl**.

1. Opis

Moduł KNX-DIM21 jest uniwersalnym dwukanałowym aktorem ściemniającym KNX, który umożliwia płynne sterowanie źródłami światła o mocy do 300 W na jeden kanał. Aktor może współpracować z obciążeniem rezystancyjnym, indukcyjnym i pojemnościowym (R, L, C).

Moduł przeznaczony jest do pracy z zasilaniem 230 V AC i nie może być stosowany do ściemniania źródeł światła zasilanych prądem stałym, ponieważ grozi to uszkodzeniem modułu i podłączonego obciążenia.

(1) zaciski obwodu obciążenia L1, L2, N, 🔊.

2 diody LED informujące o stanie kanałów/awariach (i) – zielone, A – czerwona) – patrz tabela 1.

Dioda				
	P ite		Stan kanału A / B	
0	0		zablokowany (opóźnienie startu)	
*		0	synchronizacja z siecią / detekcja obciążenia	
0	0	•	brak obciążenia / nieznany typ obciążenia przed detekcją	
0	•	0	wyłączony	
•	0	0	włączony	
· · ·			Rodzaj awarii	
0	0	-¥-	przeciążenie	
₩		-¥-	przegrzanie	
0	0	0	awaria zasilania	
•	•	•	awaria sprzętowa	
^O – nie świeci, ● – świeci, 🔆 – miga.				

Tabela 1.

Jeżeli zostanie zgłoszona awaria sprzętowa, należy wyłączyć zasilanie w obwodzie obciążenia 230 V AC i zresetować moduł odłączając przewód magistrali KNX. Jeżeli po włączeniu zasilania i restarcie modułu, kanał będzie dalej zgłaszał awarię, należy odłączyć moduł od zasilania i zgłosić usterkę do serwisu. Dalsza praca modułu może stwarzać niebezpieczeństwo utraty zdrowia lub życia dla obsługującego oraz grozi uszkodzeniem modułu i podłączonego obciążenia.

3) przyciski do ręcznego sterowania kanałami – patrz tabela 2.

Przycisk	Obsługa	Reakcja		
	krótkie naciśnięcie	włącz		
	długie naciśnięcie	rozjaśnij		
•	krótkie naciśnięcie	wyłącz		
	długie naciśnięcie	ściemnij		
+	krótkie naciśnięcie	detekcja obciążenia podłączonego do kanału		
Moduł rozpoznaje paciśniecie przycisku jako długie, gdy przycisk jest paciśniety przez czas				

Moduł rozpoznaje naciśnięcie przycisku jako długie, gdy przycisk jest naciśnięty przez czas dłuższy niż 1 sekunda.

Tabela 2.

Wartość jasności ustawiona przy pomocy przycisków nie jest zapisywana w pamięci nieulotnej modułu.

Uruchomienie detekcji podłączonego obciążenia za pomocą przycisków jest możliwe tylko wtedy, gdy dla kanału w programie ETS zostanie wybrany automatyczny sposób detekcji obciążenia (patrz pełna instrukcja do modułu).

Przyciski wykorzystywane są również do przywracania ustawień fabrycznych modułu (patrz "Przywracanie ustawień fabrycznych modułu").

- (4) czerwona dioda LED świeci podczas nadawania adresu fizycznego przy pomocy programu ETS. Nadawanie adresu może być aktywowane ręcznie przy pomocy przycisku >> na obudowie lub zdalnie z programu ETS.
- 5) przycisk programowania (wykorzystywany podczas nadawania adresu fizycznego).
- 6) zacisk do podłączenia magistrali KNX.

1.1 Typy obciążeń

Moduł może współpracować z następującymi typami obciążenia:

rezystancyjnym (R),

⁾ – indukcyjnym (L),

⁾ – pojemnościowym (C).

Po podłączeniu napięcia sieciowego moduł może automatycznie rozpoznać typ podłączonego obciążenia. Sposób detekcji podłączonego obciążenia definiowany jest oddzielnie dla każdego kanału w programie ETS (patrz pełna instrukcja do modułu).

Zaleca się wykonanie automatycznej detekcji podłączonego obciążenia. Wybór niewłaściwego typu obciążenia dla kanału grozi uszkodzeniem modułu i podłaczonego obciążenia.

Możliwe jest łączenie różnego typu obciążeń w ramach grup oświetleniowych podłączonych do jednego kanału. W grupy można łączyć obciążenie rezystancyjne (R) z indukcyjnym (L) lub rezystancyjne (R) z pojemnościowym (C). Szczegółowe informacje znajdziesz w pełnej instrukcji.

Nie można łączyć obciążenia indukcyjnego z pojemnościowym. Podłączenie tego typu obciążeń do jednego kanału spowoduje uszkodzenie modułu.

1.2 Schemat elektryczny wyjść modułu

Moduł posiada dwa niezależne kanały działające na dwóch niezależnych torach, które mają wspólny punkt neutralny.

1.3 Obudowa

Moduł zajmuje 4 pola na szynie DIN (35 mm).

2. Montaż

Wszystkie połączenia elektryczne należy wykonywać przy wyłączonym zasilaniu.

Moduł powinien być instalowany w pomieszczeniach zamkniętych, o normalnej wilgotności powietrza, np. w rozdzielniach elektrycznych na szynie DIN (35 mm).

- 1. Zamontuj moduł na szynie montażowej.
- 2. Podłącz odbiorniki do zacisków obciążenia. Oznaczenie zacisków znajduje się na panelu sterującym.

*W*szystkie podłączenia powinny być wykonane zgodnie ze schematem podłączeń (patrz "Schemat połączeń").

4

i

3. Przy pomocy zacisku przyłączeniowego podłącz do modułu przewód magistrali KNX.

i Moduł zasilany jest napięciem z magistrali KNX i nie wymaga dodatkowego zasilania.

4. Do magistrali KNX wepnij komputer z programem ETS i skonfiguruj moduł.

Do konfigurowania modułu wymagany jest komputer z programem ETS w wersji 5.5 lub nowszej, wyposażony w złącze USB lub Ethernet (TCP/IP). Do programu musi zostać zaimportowany plik aplikacji ETS firmy SATEL, który można pobrać ze strony www.satel.eu/ets.

2.1 Schemat połączeń

Rysunek 4 przedstawia sposoby podłączenia obciążenia do modułu:

I i II - tryb wielofazowy,

III i IV – tryb jednofazowy.

Maksymalne obciążenie, jakie może zostać podłączone do każdego kanału wynosi **300 W**. Możliwe jest podłączenie obciążenia tylko do jednego kanału.

Nie wolno łączyć równolegle kanałów modułu w celu zwiększenia maksymalnej mocy obciążenia (rys. 5). Grozi to uszkodzeniem modułu oraz podłączonego obciążenia.

3. Przywracanie ustawień fabrycznych modułu

- 1. Wciśnij jednocześnie cztery przyciski do sterowania stanem kanałów umieszczone na obudowie modułu (patrz "Opis"). Diody sygnalizacyjne umieszczone nad przyciskami zaświecą się.
- 2. Przytrzymaj wciśnięte przyciski do czasu, gdy diody sygnalizacyjne zgasną (około 10 sekund). Nastąpi restart modułu i ustawienia fabryczne zostaną przywrócone.

4. Dane techniczne

Zasilanie

Napięcie zasilania (magistrala KNX)	20	.30 V DC
Pobór prądu z magistrali KNX		.< 10 mA

Obwód obciążenia

Napięcie znamionowe Un	230 V AC
Częstotliwość sieci	50/60 Hz
Maksymalna strata mocy	4 W
Pobór mocy w trybie gotowości	0,8 W
Rodzaj styku	ε, MOSFET

Maksymalne obciążenie wyjścia	
Żarówki	300 W
Lampy halogenowe HV	. 300 VA
Transformatory indukcyjne	300 W
Transformatory Tronic (elektroniczne)	300 W
Lampy HVLEDtypowo 3	360 W
Świetlówki kompaktowetypowo 3	360 W
Dopuszczalne obciążenie mieszane wyjścia	
rezystancyjno-indukcyjne20	.300 VA
rezystancyjno-pojemnościowe20.	300 W
Maksymalne obciążenie urządzenia600) W / VA
Połączenia	
Maksymalny przekrój przewodu	2.5 mm ²
Maksymalny moment dokręcający	. 0.5 Nm
Parametry KNX	
Maksymalny czas reakcji na telegram	< 20 ms
Maksymalna liczba obiektów komunikacyjnych	58
Maksymalna liczba adresów grupowych	256
Maksymalna liczba asocjacji	256
Inne parametry	
Zakres temperatur pracy0°C	+45°C
Zakres temperatur dla składowania/transportu25°C	+70°C
Stopień ochrony IP	IP20
Liczba pól na szynie DIN	4
Wymiary obudowy	x 60 mm
Masa	160 g

Przekroczenie wartości granicznych parametrów pracy modułu może spowodować jego uszkodzenie i stanowić zagrożenie dla zdrowia lub życia.